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Many experimental and theoretical studies have been devoted to questions dealing with 
the hydrodynamic stability of free shearing flows. Free flows exhibit a small reserve of 
stability, and laminar motion is disrupted with even low values for the Reynolds number 
Re. in actual practice, as a rule, we encounter well-developed turbulent free flows, and 
the linear analysis of the stability of laminar flows, at first glance, is therefore aca- 
demic in nature. However, turbulent free flows have successfully been described by the 
Boussinesq model with a constant turbulent viscosity. The Reynolds numbers Re constructed 
on the basis of this viscosity are low in value, and the experimentally observed dynamics 
of such flows involves a sequence of large-scale perturbations developed against a background 
of small-scale turbulence. Attempts have been made to describe the large-scale motions 
in turbulent flows by means of the linear theory of stability [i, 2]. Widely accepted in 
the theoretical study of the stability of free shearing flows is the hypothesis of local 
parallelism in the average flow, and only in a small number of studies is the effect of 
nonparallelism taken into consideration. In this case, use is made of a poorly justified 
procedure which reduces solely to consideration of the transverse component of the average 
velocity (see, for example, [3]). More acceptable is the expansion of the stream function 
for the principal and perturbed motions, as well as the expansion of the eigenvalues into 
a series over the reciprocals of the local Re [4]. Most constructive is the approach to 
the problem of accounting for nonparallelism that is presented in [5], where the theory 
of asymptotic expansions over the small parameter is utilized, in this case the reciprocal 
of the rational power of the global Re. It turns out that for a plane Bickley jet the char- 
acteristics of perturbation vary in a non-self-similar manner, i.e., they exhibit various 
rates of change that are dependent on the longitudinal coordinate. In the present study 
we examine the example of a flow for which, owing to the nature of its spatial development, 
the stability can be analyzed by resorting to the hypothesis of perturbation self-similarity. 
Among such flows we include the self-similar circular Schlichting jet [6]. Analogous rela- 
tionships with respect to the spatial coordinates are encountered for the averaged character- 
istics of developed turbulent flow in the jet emanating out of a circular orifice~ 

In experimental studies of stability in a circular submerged jet it was noted [7J that 
the flow initially loses stability with respect to axisymmetric perturbations when Re z i0. 
Reynolds [8] cites no values for the critical Re; however, it is his contention that in 
the range Re = 50-250 both spiral and axisyn~metric perturbations are observed within the ~> 
flow. In [9~ i0] we find a thorough study of the nonviscous asymptote of stability param- 
eters for this flow and it has been determined that only the spiral perturbations can be 
nonstable. This very conclusion has been confirmed in all subsequent studies qsrried out 
for finite Re [11-13], from which it follows that in the parallel approximation~ithe flow 
is unstable only with respect to the spiral perturbations (the azimuthal number m = i) and 
loses stability when ReJ> 38. An attempt was made to explain the absence of agreement bet- 
ween experimental data and theoretical analysis by the difference from self-similarity in 
the profile of the average velocity and the initial segment of the jet. Indeed, a fuller 
velocity profile loses stability with respect to perturbations with m = 0, I, and 2 [13, 
14]. However, such a profile exists only at several of the first sections Of the jet, while 
perturbations with m = 0 were observed at considerable distances from the beginning of 
the jet. All calculations of stability in circular jets have been carried out under the 
ass~nption of local parallelism in the original flow~ 

1. Formulation and Method of Solution for the Problem. The velocity field in the 
cylindrical coordinate system (X, R~ ~) has the components (u, v, w). The following rela- 
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tionships serve as a steady solution of the equations of motion and continuity, written 
in approximation of the boundary layer for a circular submerged jet: 

u = t/(1 + rD ~, V = er(i - rD/(t + r~)~12 (1)  

[ r  = R/R0, (U, V) = (u ,  v ) / U 0 ] .  As t h e  c h a r a c t e r i s t i c  s c a l e s  we have  t a k e n  R0 = eX, U0 = 
8v/r  where  E = 8/Re and Re = ( 3 J / ~ p v 2 )  1/2 i s  t h e  Reyno lds  number which  i s  d e f i n e d  by 
t h e  momentum f l u x  J o f  t h e  j e t ,  t h e  d e n s i t y  p o f  t h e  medium, and by k i n e m a t i c  v i s c o s i t y  ~. 

As i s  u s u a l  in  l i n e a r  a n a l y s i s  o f  s t a b i l i t y ,  t h e  f i e l d s  o f  v e l o c i t y  and p r e s s u r e  a r e  
p r e s e n t e d  in  t h e  form o f  an i n i t i a l  s t e a d y  d i s t r i b u t i o n  p l u s  a s m a l l  p e r t u r b a t i o n  (u = U + 
u ' ) .  We w i l l  u se  t h e  a f f i n e  t r a n s f o r m a t i o n s  by means o f  which  we have  d e r i v e d  t h e  s e l f -  
s i m i l a r  r e l a t i o n s h i p s  ( 1 ) ,  f o r  t h e  e q u a t i o n s  o f  m o t i o n  and c o n t i n u i t y ,  l i n e a r i z e d  w i t h  r e -  
s p e c t  t o  t h e  p e r t u r b a t i o n s :  

Cu' t 
a-F + (UV)u' + (u 'V)U= -- - s  V p ' +  ~Au', V u ' =  0. (2 )  

We will write the perturbations in the form 

(u', v', w')} IUo(x) [u(r), v(r), w(r)]}exp(gO) 
Re p'  = tu~ (~) q (,.) 

(ao/ax  = So(X), oola(p = m, O0lOt = - - % ) .  

(3 )  

Here x = eX, r = R/R0(x); m0 is the angular frequency of the linear oscillations; m is the 
azimuthal wave number; %(x) is the complex wave number, whose imaginary part characterizes 
the rate of change in the perturbations, associated with the instability of the latter. 
Consequently, it is assumed that the amplitude and transverse scale of the small perturba- 
tions change slowly with the longitudinal coordinate x, in a manner similar to the change 
in the average flow, and deviation from self-similar behavior in the oscillations is deter- 
mined by the imaginary part of their phase. The time derivatives and the derivatives with 
respect to the longitudinal coordinates in the new variables 0 and x, with consideration 
of the affine transformation of the transverse coordinate, are presented as 

otOt = --O)oO/OO, o/OX = a0~a0 + e(~Ox - (0 In RolOx ) rOIOr). (4)  

I t  m i g h t  be assumed t h a t  i f  t h e r e  e x i s t  n e u t r a l  o s c i l l a t i o n s  o f  t h e  s e l f - s i m i l a r  form as  
in  ( 3 ) ,  t h e i r  w a v e l e n g t h  w i l l  a l s o  change  in  s e l f - s i m i l a r  f a s h i o n .  Moreover ,  t h e  c h a r a c t e r -  
i s t i c  s c a l e  o f  t h e  f r e q u e n c y  f o r  t h e s e  n e u t r a l  o s c i l l a t i o n s  depends  on t h e  s l o w l y  v a r y i n g  
l o c a l  s c a l e s  o f  v e l o c i t y  and l e n g t h ,  i . e . ,  

s0(x) = ~/R0(x), ~o = ~UolRo. ( 5 )  

One has  t o  a s c e r t a i n  w h e t h e r  o r  n o t  t h e  f r e q u e n c y  i s  r e g a r d e d  as d e p e n d e n t  on t h e  l o n g i -  
t u d i n a l  c o o r d i n a t e s  as  w e l l  as  on t h e  p a r a m e t e r ,  s i n c e  f o r  g i v e n  x and Re a s p e c i f i c  form 
o f  t h e  p e r t u r b a t i o n s  i s  s o u g h t ,  and we have  r e f e r e n c e  h e r e ,  in  p a r t i c u l a r ,  t o  o s c i l l a t i o n s  
t h a t  a r e  n e u t r a l  o r  which  grow w i t h  some i n c r e m e n t .  However,  i f  we have  t o  examine t h e  
s p a t i a l  e v o l u t i o n  o f  t h e  s m a l l  p e r t u r b a t i o n  w i t h  a f i x e d  f r e q u e n c y  ~0, t h e  n e u t r a l  c u r v e  
~(Re)  and t h e  s c a l a r  s i m i l a r i t y  (5)  d e f i n e  t h e  r a t e  o f  change  in  X in  which t h i s  p e r t u r b a -  
t i o n  will increase for a given Re. Results of this kind are illustrated in [5], where it 
is demonstrated that for fixed values of the frequency ~0 and Re > Re, there exists a range 
of variations in theilongitudinal coordinate in which the selected perturbation is unstable. 
If we substitute a solution of the form of (3) into (2) and if we accomplish the transition 
to the new variables by means of (4) and (5), the dimensionless equations for the perturba- 
tions will be written in the following form: 

~2v -4- q' Jr- i2mwlr ~ -- [(rv) '~] '  = eRe[U(rv)' + 
+ e(rV1) ' /2~-  (V~v)'/2] + Lv, (6)  

~2w + imq/r -- i2mu/r 2 -- [(rw)'~] '  = 

= eRe[U(rw)' - -  Vl(rw)'/r/2] + Lw, 

~2u ~ iaq -4- ReU'v -- (ru')'/r = e[q + (rq)'] + 

622 



+ eRe[U(ru)' + (rU)'u -- Vlu'/2] -k Lu, 

(rv)'/r + imw/r + i~u --e(ru)' = O. 

Here ~= = iRe(aU - ~) + ~2 + m2/r2; Vl = V/e; Lf = E2r(rf) '' + 2e(e - ia)(rf)' - i~ef. The 
prime denotes the derivative with respect to r. The boundary conditions for the perturba- 
tions 

u(O) = q(O) = O, m # O, v(O) = w(O) = O, m #  l ,  

v(O) + iw(O) = O, m = t ,  
(7) 

retain their earlier form [9, 12-14]. If we assume in (6) that s = 0, we will then derive 
the well-known system of equations in approximation of parallelism in the initial flow. 
The nonparallelism parameter g is a function of the global Re (see above) and changes to- 
gether with it in appropriate fashion. Solution of the question regarding flow stability 
involves finding the eigenvalues of ~ and the eigenfunctions u, v, w, and q of the boundary- 
value problem (6), (7). The possibility of reducing the stability analysis for a flow that 
is not one-dimensional to the classical problem involving eigenvalues is governed by the 
specific nature of the flow in a circular jet, for which, first of all, the transverse scale 
R 0 coincides with the flow longitudinal coordinate and, second, the local Re is constant 
throughout the entire flow. 

The eigenvalue problem was solved numerically by the method of differential sweeping, 
with joining in the critical layer [15, 16]. A number of difficulties arise in the solution 
of the equations for the sweeping coefficients, owing to the presence of singularities at 
the axis. Equations (6) in the case of r = 0 have a regular singular point in whose vicinity 
the solution for the system in the form of a series over the powers of r can be found: 

(v,w) =rV(a~+ b~r 2+. . . ) ,  (u,q) =rV-X(c,+dir  2+..o), i = t ,2 .  (8) 

Substituting (8) into (6) and collecting terms for identical powers of r, we derive the 
characteristic equation for y and the recursion relationships which link the constants in 
expansion (8). The roots of the characteristic equation are equal to (m + i), (I - m), 
-(m + l),i(m -- i), with the first two being multiple. Three linearly independent solutions 
(u, v, w, q) for m ~ 0, bounded when r = 0, have the form 

{--r~; i[(a/(m + ~) + ie)/2lr~+~; [(oU(m + l) + ie)/2]r~+~; 0}, 
{0; [m/(m + l)/4]rm+~; i[(m 4- 2)/(m + l)/4]rm+~; r~}, 
{0; r~-l; ira-l; 0}. 

(9) 

Expressions (9) are used to find the sweeping matrix and its first derivative for r = 0, 
which are necessary in the solution of the equations for the sweeping coefficients~ When 
m = 0 the order of system (6) can be reduced to four. Using the form of the boundary condi- 
tions with r = 0, it is not difficult to write the two linearly independent solutions about 
the axis, but because of their cumbersome nature these are not presented here. In numerical 
calculations the condition of perturbation attenuation at infinity is replaced by the condi- 
tion of adhesion at some rather large distance r 0 from the axis~ For small ~r the value 
of r 0 must be increased, since longwave perturbations are extremely sensitive to the condi- 
tions at the outer boundary. In order to avoid the effect of the boundary conditions on 
the calculation results, the integration interval is changed according to the law r 0 = c0/ero 
it was found that when c o = 8 any further increase in r 0 for a fixed value of ~r has no 
effect on the results of the calculation of the eigenvalues. The equations for the sweeping 
coefficients were solved by the Runge-Kutta method with a constant interval~ In order to 
improve calculational accuracy the integration interval was fragmented in the vicinity of 
the critical layer. The initial eigenvalues of the boundary-value problem (6), (7) for 
m = 0, 1 were obtained by making the transition (in terms of continuity) from the data pre- 
sented in [ii, 13, 17]. 

2o Stabilit Z of Axisymmetric Perturbations (m = 0). Figure i, in the (Re, m) plane, 
shows the regions in which there exist both stable and unstable small perturbations in the 
flow being examined here, and where the effects of nonparallelism are taken into considera- 
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tion. The neutral curve 1 corresponds to the azimuthal number m = 0, and the nature of 
the change in this neutral curve is similar to the neutral curves for the flows at the walls, 
without any bending points in the velocity profile, i.e., with an increase in Re the region 
of instability degenerates. The critical parameters are ~, = 0.124, Re, = 27.34, ~, = 0.125. 
The phase velocity c, = 0.992 of the perturbations is virtually equal to the velocity of the 
flow at the jet axis. The change in c along the neutral curves is shown in Fig. 2 (curve 
i), where the upper branch corresponds to c < i. With an increase in Re, c + i. On the 
lower branch c > i, which is characteristic of two-dimensional perturbations with m r 
1 in problems dealing with the stability of boundary-layer type flows and is associated 
with the absence of a complete spectrum of eigenvalues [18, 19]. Figure 3 shows ~ as a 
function of m for two values of Re, in excess of the critical value. These results have 
enabled us to obtain the parameters for the spatial development of harmonic perturbation 
with a frequency ~0 =U~/d for the chosen Re ( Uis the average velocity of the Hagen- 
Poiseuille flow at the outlet from the nozzle, and d is its diameter). When the Re numbers 
are constructed on the basis of these dimensions, they coincide with the local Re = UoR0/v, 
adopted in this study. We will measure the distance along the jet and the perturbation 
wavelength in nozzle calibers. Using relationships (5) and the definition of R 0 = x as 
the scale, we derive the expresions x/d = (~/~)z/2, ~0 = ~(x/d), which allows us to present 
the results in Fig. 3 in the form of Fig. 4. Here we have an illustration of the perturba- 
tion increments for three values of the dimensionless frequency ~ as a function of the longi- 
tudinal coordinate. The dashed-dotted line corresponds to the maximum values of the incre- 
ment for Re = 30 (a), ~0i = -0"44"10-~/(x/d), and 50 (b), ~0i = -l'38"10-2/(x/d)- With 
a fixed distance from the nozzle, the perturbations with a specific frequency ~ exhibit 
the greatest growth. The frequency of the most dangerous oscillations ~, ~ (x/d) -2 dimin- 
ishes with increasing distance from the nozzle. Thus, in the process of jet development 
downstream we find a continuous shifting of the time and space scales for the more dangerous 
perturbations. For the critical values of the parameters Fig. 5 shows the distributions 
of the field of pressure and velocity in the perturbations. The perturbed velocity field 
has the form of toroidal vortices, one following the other, at a phase velocity c = U0(x)m/ 

~r" 
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Line 2 shows the curve for m = 1 in 
Fig. i. The dashed line corresponds to the known neutral curve for the parallel approxima- 
tion (w, = 0.104, Re, = 37.68, ~, = 0.45). A real jet is less stable, with critical param- 
eters ~, = 0.184, Re, = 27,49, e, = 0.45. As Re + ~, both neutral curves exhibit a common 
asymptote ~ = 0091. The change in the phase velocity along the neutral curve is shown in 
Fig. 2 (curve 2), and the upper branch corresponds to higher values of c. Consideration 
of the effects of nonparallelism leads to a significant expansion of the region in which 
unstable oscillations exist. Some idea as to the relative role of perturbations�9 with m = 
0 and 1 can be obtained from Figs. 3 and 4. Although the increments of the axisymmetric 
perturbations are smaller than for the spiral perturbations, and this difference increases 
as Re increases, both types of perturbations should be observed in the flow. The maximum 
values of the increment for m = 1 are determined by the relationships ~0i = -1.02"10-2/ 
(x/d) for Re = 30 and ~0i = -5.55"i0-2/(x/d) when Re = 50. With increasing Re, the spiral 
oscillations become predominant. Figure 6 (for the notation see Fig. 5) shows the fields 
of pressure and velocity in the neutral oscillations for critical values of the parameters. 
The maximum perturbation in axial velocity is positioned at some distance from the axis 
of s~Lmetry. The streamlines of the perturbed motion form spirals which are displaced at 
the phase velocity c along its axis. 

4. Discussion of Results and Conclusions. As of the moment we do not have at hand 
any systematic experimental study into the stability of circular submerged jets. Those 
few studied carried out in this field are primarily qualitative and descriptive in nature 
(see, for example, [6, 7]), which makes difficult comparison to theoretical results~ Let 
us take note of the fact derived in the present study, which correlates with experimental 
observations. In addition to the unstable spiral oscillations in the same range of Re num- 
bers there exist unstable axisymmetric perturbations with a phase velocity close to the 
velocity of the flow at the axis of the jet. The critical Re numbers are close to those, 
beginning from which we observe regular perturbations of the two above-cited types. This 
regularity of perturbations is associated with their extremely weak interaction with the 
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average flow. According to the proposed self-similarity, it follows from relationships 
(3) and (5) that the amplitude of the perturbations changes exponentially. In addition 
to the self-similar portion, the exponent contains the complex number is/g, determining 
the attenuation for increase in perturbations. The exponential law and the not overly large 
values of the increment ~i/s for Re ~ I00 confirm the slow change in the perturbations along 
the flow. 

In the phenomenological theory of turbulence in free shearing flows, for a description 
of the average characteristics, the Boussinesq hypothesis regarding turbulent viscosity 
[6] has been successfully employed. This same hypothesis is used also in analysis of the 
stability of turbulent flows with respect to limited large-scale perturbations [20]. For 
a circular jet the turbulent viscosity retains its constant value throughout the entire 
flow, and the results derived in this study relative to the stability of the laminar circular 
jet can therefore be extended completely to the case of a turbulent flow. 

The calculations that have been carried out show that the role of the effects associa- 
ted with nonparallelism of the flow in the jet cannot be reduced to a small correction fac- 
tor for the parallel approximation, but radically alters the overall pattern of stability. 
This conclusion apparently pertains to analysis of stability and to similar free shearing 
flows. 
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